

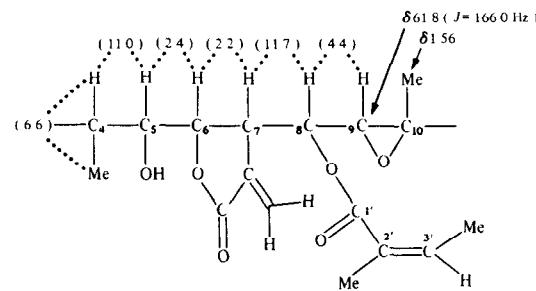
SESQUITERPENE LACTONES FROM *BLUMEA BALSAMIFERA*

YASUO FUJIMOTO,* AGUSTINE SOEMARTONO† and MADE SUMATRA†

The Institute of Physical and Chemical Research, Wako, Saitama 351-01, Japan, †National Atomic Energy Agency, Centre for the Application of Isotopes and Radiation, kebayoranlama, Jakarta 12240, Indonesia

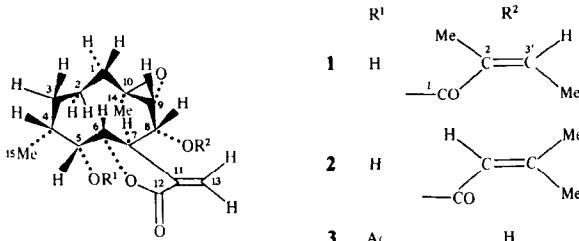
(Received 22 June 1987)

Key Word Index—*Blumea balsamifera*, Compositae, sesquiterpene lactone, antitumour activity


Abstract—Three new sesquiterpene lactones were isolated from dried leaves of *Blumea balsamifera*. The structure of the sesquiterpene lactones were determined by their IR, ¹H NMR, ¹³C NMR and MS spectral data and some chemical reactions. New sesquiterpene lactones exhibited the antitumour activity against Yoshida sarcoma cells in tissue culture

INTRODUCTION

Blumea balsamifera is a medicinal plant which has been used as a carminative, a vermifuge, a diaphoretic and an expectorant in South-East Asia and China. The studies on the constituents of *B. balsamifera* were carried out from old times and a number of flavones, monoterpenes and triterpenes have been isolated from this plant [1]. We now report here the isolation and structural elucidation of three new antitumour sesquiterpene lactones, named blumealactone A (1), B (2) and C (3) from Indonesian *Blumea balsamifera* D C


RESULTS AND DISCUSSION

Blumealactone A (1), mp 205–208°, $[\alpha]_D -45.9^\circ$ (CHCl_3 ; $c 0.88$), exhibited the molecular ion peak at m/z 364, $\text{C}_{20}\text{H}_{28}\text{O}_6$ and the base peak at m/z 83 [$\text{MeCH}=\text{C}(\text{Me})\text{C}=\text{O}]^+$. Its IR spectrum showed the presence of hydroxyl group (3400 cm^{-1}), γ -lactone (1755 cm^{-1}) and ester group (1720 cm^{-1}). The ¹H NMR spectrum of 1

The numbers in parentheses are J values in Hz

Acetylation of 1 with acetic anhydride–pyridine gave a monoacetate (4) which exhibited the proton signal due to H-5 ($\delta 5.15$) at 1.45 ppm lower field as compared with that ($\delta 3.70$) of 1, thereby suggesting the presence of a hydroxyl group at C-5. The α -methylene- γ -lactone moiety attached to C-6 and C-7 was proved by the chemical shift of the H-6 ($\delta 5.00$) and the observation of the allylic coupling ($J = \sim 1.0 \text{ Hz}$) between H-7 and the exomethylene protons. The presence of the 2-methyl-2-butenoic acid moiety at C-8 was confirmed by the following chemical reaction and ¹H NMR data of the reaction product. Hydrolysis of 1 with 5% MeOH–KOH gave a diol (4) which showed the molecular ion peak at m/z 282 [$\text{M}]^+ (1 - \text{C}_5\text{H}_6\text{O})$ and its ¹H NMR spectrum showed the proton signal ($\delta 4.27$) due to the H-8 at 1.21 ppm higher field as compared with that ($\delta 5.48$) of 1. Thus the 2-methyl-2-butenoic acid moiety should be connected to C-8. In the ¹³C NMR spectrum of 1, the signal with a large coupling constant ($J_{C-H} = 166.0 \text{ Hz}$) was observed at $\delta 61.8$ which was assigned to C-9 by selective proton decoupling experiment. This large coupling constant and the chemical shift of H-9 ($\delta 3.16$) indicated the presence of an epoxide ring including C-9 and C-10. Therefore, the tertiary methyl group which appeared at $\delta 1.56$ should be attached to the C-10 bearing epoxide oxygen atom. From consideration of the ¹³C NMR data and the empirical formula, 1 should be a tricyclic compound. Thus, the residual three methylene groups should be inserted between C-4 and C-10 to compose a ten-membered ring

indicated the presence of four methyl groups at $\delta 1.12$, 1.56, 1.91, 2.00, exomethylene protons at $\delta 5.72$, 6.23, and a vinyl proton at $\delta 6.13$. These spectral data of 1 suggested the presence of α -methylene- γ -lactone and 2-methyl-2-butenoic acid moieties. Furthermore, detailed ¹H NMR decoupling experiments on 1 and some chemical reactions revealed the substitution pattern from C-4 to C-9 (Scheme 1)

*Author to whom correspondence should be addressed

Table 1 ^1H NMR spectral data for blumealactone A (1), B (2) and (3) [400 MHz, CDCl_3 , δ]*

H	1	2	3
1 β	1.03 <i>dt</i> (4.9, 13.4)	1.03 <i>dt</i>	1.09 <i>dt</i>
1 α	2.11 <i>dt</i> (3.6, 13.4)	2.12 <i>dt</i>	2.16 <i>dt</i>
2 β	1.86 <i>m</i>	1.84 <i>m</i>	1.86 <i>m</i>
2 α	1.42 <i>m</i>	1.42 <i>m</i>	1.42 <i>m</i>
3	1.29 <i>m</i>	1.29 <i>m</i>	1.32 <i>m</i>
4	1.56 <i>m</i>	1.60 <i>m</i>	1.65 <i>m</i>
5	3.70 <i>br d</i> (11.0)	3.68 <i>br d</i>	5.13 <i>dd</i> (2.4, 11.5)
6	5.00 <i>dd</i> (2.2, 2.4)	4.94 <i>dd</i>	4.87 <i>dd</i>
7	3.47 <i>br dd</i> (2.2, 11.7)	3.41 <i>br dd</i>	3.23 <i>dd</i> (2.2, 10.7)
8	5.48 <i>dd</i> (4.4, 11.7)	5.42 <i>dd</i>	4.26 <i>dd</i> (3.7, 10.7)
9	3.16 <i>d</i> (4.4)	3.08 <i>d</i>	3.04 <i>d</i> (3.7)
13	5.72 <i>br s</i> 6.23 <i>br s</i>	5.76 <i>br s</i> 6.24 <i>br s</i>	6.11 <i>br s</i> 6.37 <i>br s</i>
14	1.56 <i>s</i>	1.56 <i>s</i>	1.65 <i>s</i>
15	1.12 <i>d</i> (6.4)	1.12 <i>d</i>	0.97 <i>d</i>
2'		5.65 <i>m</i>	
Me-2'	1.91 <i>br s</i>		
3'	6.13 <i>br q</i> (7.3)		
Me-3'	2.00 <i>br d</i> (7.3)	1.93 <i>d</i> (1.2) 2.19 <i>d</i> (1.2)	
MeCO			1.99 <i>s</i>

*Coupling constants (in parentheses) are not repeated if identical with those in preceding column

Finally, the stereostructure of **1** was determined from the magnitude of the coupling constants of each proton signal from H-4 to H-9 and the results of the NOE experiments on **1** (Table 1). These coupling constants and the NOE results are explained satisfactorily by the structure (**1**).

Blumealactone B (**2**), mp 221–222°, $[\alpha]_D -34.2^\circ$ (CHCl_3 , *c* 0.58), exhibited the molecular ion peak at *m/z* 364, $\text{C}_{20}\text{H}_{28}\text{O}_6$ and the base peak at *m/z* 83 [$\text{C}_5\text{H}_7\text{O}$]⁺, and its IR spectrum showed the presence of hydroxyl group (3450 cm^{-1}), γ -lactone (1755 cm^{-1}) and ester (1720 cm^{-1}). These MS, IR and ^1H NMR data of **2** indicated that the framework of **2** should be the same as that of **1** and that the structural difference in **2** and **1** must be in the side chain moiety attached to C-8. In the ^1H NMR spectrum of **2**, two doublet methyl signals (δ 1.93 and 2.19) and a multiplet vinyl proton signal (δ 5.65) due to the side chain moiety were observed. Thus, the structure of blumealactone B was represented by the formula **2**.

Blumealactone C (**3**), mp 247–250°, $[\alpha]_D -4.85^\circ$ (CHCl_3 , *c* 1.55), exhibited the molecular ion peak at *m/z* 324, $\text{C}_{17}\text{H}_{24}\text{O}_6$ and the base peak at *m/z* 43 [$\text{C}_2\text{H}_3\text{O}$]⁺ and its IR spectrum showed the presence of a hydroxyl group (3450 cm^{-1}), γ -lactone (1755 cm^{-1}) and ester (1720 cm^{-1}). On comparing the MS, IR and ^1H NMR (Table 2) data of **3** with those of **1** and **2**, it is clear that **3** should be an acetate with the same framework as those of **1** and **2**. The detailed ^1H NMR decoupling experiments on blumealactone C indicated that the acetic acid moiety should be attached to C-5. Thus, the structure of blumealactone C was assigned to the structure (**3**). All these blumealactones exhibited growth inhibition against Yoshida sarcoma cells at the concentration of 5–10 $\mu\text{g}/\text{ml}$, antitumour activities determined according

Table 2 NOE difference spectral data of **1**

Saturation	Observed NOE (%)
H-6	H-9 (10.0)
H-9	H-6 (8.9), H-8 (16.0)
H-14	H-7 (10.4)
Me-2'	H-3' (11.6)

to ref [2]. The details on the biological activities of blumealactones will be published elsewhere.

EXPERIMENTAL

^1H NMR (400 MHz) and ^{13}C NMR (25 MHz) were measured in CDCl_3 containing TMS as an int standard. The leaves of *Blumea balsamifera* D C were collected in the suburb of Jakarta, Indonesia.

Isolation of blumealactone A (1), B (2), and C (3) The dried leaves (500 g) of *Blumea balsamifera* were extracted with 90% EtOH (1 l \times 3). After concen of the EtOH soln, the crude extracts were chromatographed on HP-20 resin (Nippon Rensui) (eluted successively with 1.5 l each of 40% MeOH, 60% MeOH, 80% MeOH, MeOH and Me_2CO). The growth inhibition of each fraction against Yoshida sarcoma cells was tested and only the 80% MeOH fraction was found to be active. Thus, this fraction was further purified by HPLC (Nucleosil 50–5, 20 \times 300 mm, *n*-hexane–EtOAc (1:1), flow rate, 9 ml/min) to give 200 mg of **1** (*R*, 30 min), 28 mg of **2** (*R*, 34 min) and 200 mg of **3** (*R*, 49 min). 1, EIMS 70 eV, *m/z* (rel int), 364 [M^+] (3.8), 344 (8.8), 330 (3.8), 264 (5.3), 425 (11.3), 97 (20), 83 (100), IR (KBr) $\nu_{\text{max}}\text{cm}^{-1}$ 3400 (*br*), 1755, 1720 ^{13}C NMR, 1.5.7 (*q*, C-19), 16.3 (*q*, C-14), 17.6 (*q*,

C-15), 20.3 (q, C-20), 22.6 (t, C-2), 30.0 (t, C-3), 36.2 (d, C-4), 39.7 (d, C-7), 40.7 (t, C-1), 58.8 (s, C-10), 61.8 (d, C-9), 68.8 (d, C-8), 74.8 (d, C-5), 78.0 (d, C-6), 124.3 (t, C-13), 126.4 (s, C-17), 136.2 (s, C-11), 139.8 (d, C-18), 165.7 (s, C-12), 169.8 (s, C-16), 2, EIMS 70 eV, *m/z* (rel int) 364 [M]⁺ (2.5), 355 (5.0), 232 (7.8), 189 (7.5), 180 (8.8), 123 (17.5), 83 (100), IR (KBr) $\nu_{\text{max}} \text{cm}^{-1}$ 3450 (*br*), 1755, 1720, 3, EIMS 70 eV, *m/z* (rel int) 324 [M]⁺ (1.0), 282 (2.5), 264 (11.2), 232 (20.0), 189 (27.0), 123 (71.2), 109 (72.5), 97 (45.0), 85 (43.7), 69 (28.7), 43 (100), IR (KBr) $\nu_{\text{max}} \text{cm}^{-1}$ 3450 (*br*), 1755–1730 (*br*).

Acetyl blumealactone A (4) Acetyl blumealactone A (4) was prepared by usual means using acetic anhydride–pyridine 4, mp 71–72°, ¹H NMR; 9.75 (1H, *d*, *J* = 6.6 Hz, H-15), 1.60 (3H, *s*, H-14), 1.96 (3H, *br s*, H-20), 1.97 (3H, *s*, MeCO), 2.02 (3H, *dq*, *J* = 1.5, 7.3 Hz, H-19), 3.13 (1H, *d*, *J* = 4.2 Hz, H-9), 3.47 (1H, *br dd*, *J* = 2.2, 11.7 Hz, H-7), 5.00 (1H, *dd*, *J* = 2.2, 2.4 Hz, H-6), 5.15 (1H, *dd*, *J* = 2.4, 11.0 Hz, H-5), 5.47 (1H, *dd*, *J* = 4.2, 11.7 Hz, H-8), 5.77 and 6.31 (1H each, *br s*, H-13), 6.15 (1H, *br q*, *J* = 7.3 Hz, H-18).

Hydrolysis of blumealactone A (1) Blumealactone A (1) was hydrolysed with 5% MeOH–KOH for 3 hr at room temp. The mixture was diluted with H₂O and then acidified with 5% HCl. Usual treatment of this mixture gave an oil which was purified by HPLC (Nucleosil 50-5, *n*-hexane–EtOAc (2:1), 8 × 300 mm) to give a diol (5), EIMS 70 eV, *m/z* (rel int) 282 [M]⁺ (3.1), 264 (6.2), 222 (13.8), 179 (15.0), 164 (28.1), 138 (30.0), 127 (53.8), 109 (100), 95 (45.0), 81 (33.7), 71 (30), ¹H NMR, 1.12 (3H, *d*, *J* = 6.4 Hz, H-15), 1.62 (3H, *s*, H-14), 3.02 (1H, *d*, *J* = 3.9 Hz, H-9), 3.24 (1H, *dq*, *J* = 2.6, 10.7 Hz, H-7), 3.65 (1H, *dd*, *J* = 1.9, 11.0 Hz, H-5), 4.27 (1H, *dd*, *J* = 3.7, 10.7 Hz, H-8), 4.83 (1H, *dd*, *J* = 22.2, 3.2 Hz, H-5), 6.10 and 6.35 (1H each, *dd*, *J* = 1.0, 2.0 Hz, H-13).

REFERENCES

- 1 N Ruangrungsi, P Tappayuthpijarn and P Tantivatana, (1981) *J Nat Prod* **44**, 541
- 2 Fujimoto, Y and Satoh, M (1986) *Chem Pharm Bull* **34**, 4540